Three Forms of the 5.8‐S Ribosomal RNA Species in Saccharomyces cerevisiae
Abstract
The existence of three stable forms of the 5.8‐S ribosomal RNA species in Saccharomyces cerevisiae has been demonstrated. The major form constitutes approximately 90% of the total 5.8‐S RNA and the two minor forms each constitute approximately 5%. The nucleotide sequence of the major form begins pA‐A‐A‐Cp. The sequences of the minor forms begin pU‐A‐U‐U‐A‐A‐A‐A‐A Cp and pA‐U‐A‐U‐U‐A‐A‐A‐A‐A‐Cp. The remainders of the sequence of all three forms appear to be identical.
Number of times cited: 48
- Luis G. Morello, Cédric Hesling, Patrícia P. Coltri, Beatriz A. Castilho, Ruth Rimokh and Nilson I. T. Zanchin, The NIP7 protein is required for accurate pre-rRNA processing in human cells, Nucleic Acids Research, 10.1093/nar/gkq758, 39, 2, (648-665), (2010).
- Katrin Heindl and Javier Martinez, Nol9 is a novel polynucleotide 5′‐kinase involved in ribosomal RNA processing, The EMBO Journal, 29, 24, (4161-4171), (2010).
- Luis A. Estrella, Shankarling Krishnamurthy, Cindy R. Timme and Michael Hampsey, The Rsp5 E3 Ligase Mediates Turnover of Low Affinity Phosphate Transporters inSaccharomyces cerevisiae, Journal of Biological Chemistry, 283, 9, (5327), (2008).
- Francesca Zappacosta, Therese S. Collingwood, Michael J. Huddleston and Roland S. Annan, A Quantitative Results-driven Approach to Analyzing Multisite Protein Phosphorylation, Molecular & Cellular Proteomics, 10.1074/mcp.M600238-MCP200, 5, 11, (2019-2030), (2006).
- Tanya Jackson, Edward Kwon, Anna M. Chachulska and Linda E. Hyman, Novel roles for Elongin C in yeast, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1491, 1-3, (161), (2000).
- Larry A. Coury, Julie E.M. McGeoch, Guido Guidotti and Jeffrey L. Brodsky, The yeast Saccharomyces cerevisiae does not sequester chloride but can express a functional mammalian chloride channel, FEMS Microbiology Letters, 179, 2, (327-332), (2006).
- Jaap Venema and David Tollervey, Ribosome Synthesis in Saccharomyces cerevisiae , Annual Review of Genetics, 10.1146/annurev.genet.33.1.261, 33, 1, (261-311), (1999).
- Michael W. Briggs, Karina T. D. Burkard and J. Scott Butler, Rrp6p, the Yeast Homologue of the Human PM-Scl 100-kDa Autoantigen, Is Essential for Efficient 5.8 S rRNA 3′ End Formation, Journal of Biological Chemistry, 273, 21, (13255), (1998).
- T. Miyao and N. A. Woychik, RNA polymerase subunit RPB5 plays a role in transcriptional activation, Proceedings of the National Academy of Sciences, 95, 26, (15281), (1998).
- Lasse Lindahl and Janice M. Zengel, RNase MRP and rRNA processing, Molecular Biology Reports, 22, 2-3, (69), (1996).
- Jaap Venema and David Tollervey, Processing of pre‐ribosomal RNA in Saccharomyces cerevisiae, Yeast, 11, 16, (1629-1650), (2004).
- Janet L. Paluh and David A. Clayton, Schizosaccharomyces pombe RNase MRP RNA is homologous to metazoan RNase MRP RNAs and may provide clues to interrelationships between RNase MRP and RNase P, Yeast, 11, 13, (1249-1264), (2004).
- Yuanming Hu and Gunter B. Kohlhaw, Additive Activation of YeastLEU4Transcription by MultiplecisElements, Journal of Biological Chemistry, 270, 10, (5270), (1995).
- William E. Payne, Pamela M. Gannon and Chris A. Kaiser, An inducible acid phosphatase from the yeast Pichia pastoris: characterization of the gene and its product, Gene, 163, 1, (19), (1995).
- M E Schmitt and D A Clayton, Characterization of a unique protein component of yeast RNase MRP: an RNA-binding protein with a zinc-cluster domain., Genes & Development, 8, 21, (2617), (1994).
- H. Wang, L. Reynolds-Hager and D. J. Stillman, Genetic interactions between SIN3 mutations and the Saccharomyces cerevisiae transcriptional activators encoded by MCM1, STE12, and SWI1, MGG Molecular & General Genetics, 245, 6, (675), (1994).
- B. Y. Tréton, M. -T. Le Dall and C. M. Gaillardin, Complementation of Saccharomyces cerevisiae acid phosphatase mutation by a genomic sequence from the yeast Yarrowia lipolytica identifies a new phosphatase, Current Genetics, 22, 5, (345), (1992).
- Jacobus Klootwuk and Rudi J. Planta, [9] Isolation and characterization of yeast ribosomal RNA precursors and preribosomes, RNA Processing Part A: General Methods, 10.1016/0076-6879(89)80095-3, (96-109), (1989).
- Audrey Stevens and Marilyn K. Maupin, A 5′ → 3′ exoribonuclease of Saccharomyces cerevisiae: Size and novel substrate specificity, Archives of Biochemistry and Biophysics, 252, 2, (339), (1987).
- Rajinder S. Sidhu and Arthur P. Bollon, Analysis of α-factor secretion signals by fusing with acid phosphatase of yeast, Gene, 54, 2-3, (175), (1987).
- Akio Toh‐E and Toshitsugu Shimauchi, Cloning and sequencing of the PHO80 gene and CEN15 of Saccharomyces cerevisiae, Yeast, 2, 2, (129-139), (2004).
- S. Dave Smith, Nandita Banerjee and Thomas O. Sitz, Gene heterogeneity: a basis for alternative 5.8S rRNA processing, Biochemistry, 23, 16, (3648), (1984).
- Akio Toh-e, Yoshinobu Kaneko, Jir� Akimaru and Yasuji Oshima, An insertion mutation associated with constitutive expression of repressible acid phosphatase in Saccharomyces cerevisiae, MGG Molecular & General Genetics, 191, 3, (339), (1983).
- David C. Fritzinger and Maurille J. Fournier, Chemical modification analysis of ion-dependent changes in the solution structure of yeast phenylalanine tRNA, Biochemistry, 21, 9, (2118), (1982).
- Thomas O. Sitz, Nandita Banerjee and Ross N. Nazar, Effect of point mutations on 5.8S ribosomal ribonucleic acid secondary structure and the 5.8S-28S ribosomal ribonucleic acid junction, Biochemistry, 20, 14, (4029), (1981).
- T.A. DYER and C.J. LEAVER, RNA: Structure and Metabolism, Proteins and Nucleic Acids, 10.1016/B978-0-12-675406-3.50009-8, (111-168), (1981).
- Gail P. Mazzara, Guy Plunkett and William H. McClain, Maturation Events Leading to Transfer RNA and Ribosomal RNA, Cell Biology: A Comprehensive Treatise, 10.1016/B978-0-12-289503-6.50016-3, (439-545), (1980).
- David W. Gates and Bernard H. Brownstein, Ribosomal RNA from the yeast and mycelial phases ofHistoplasma capsulatum, Experimental Mycology, 4, 3, (231), (1980).
- Peter DE JONGE, Rob A. KASTELEIN and Rudi J. PLANTA, Non‐Ribosomal Nucleotide Sequences in 7‐S RNA, the Immediate Precursor of 5.8‐S Ribosomal RNA in Yeast, European Journal of Biochemistry, 83, 2, (537-546), (2008).
- Peter J. FORD and Tom MATHIESON, The Nucleotide Sequences of 5.8‐S Ribosomal RNA from Xenopus laevis and Xenopus borealis, European Journal of Biochemistry, 87, 1, (199-214), (2008).
- Robert A. Cox, Structure and function of prokaryotic and eukaryotic ribosomes, Progress in Biophysics and Molecular Biology, 32, (193), (1978).
- Graeme I. Bell, Alejandro Venegas, Pablo Valenzuela, Frank R. Masiarz, Louis J. De Gennaro, Robert J. Bishop and William J. Rutter, THE STRUCTURE OF THE RIBOSOMAL RNA GENES OF THE YEAST SACCHAROMYCES CEREVISIAE, Biochemistry and Genetics of Yeast, 10.1016/B978-0-12-071250-2.50031-8, (445-461), (1978).
- Patricia Z. O'Farrell, Barbara Cordell, Pablo Valenzuela, William J. Rutter and Howard M. Goodman, Structure and processing of yeast precursor tRNAs containing intervening sequences, Nature, 274, 5670, (438), (1978).
- Thomas D. Petes, James R. Broach, Pieter C. Wensink, Lynna M. Hereford, Gerald R. Fink and David Botstein, Isolation and analysis of recombinant DNA molecules containing yeast DNA, Gene, 4, 1, (37), (1978).
- ROBERT A. COX, STRUCTURE AND FUNCTION OF PROKARYOTIC AND EUKARYOTIC RIBOSOMES, Progress in Biophysics and Molecular Biology, 10.1016/B978-0-08-020295-2.50007-6, (193-231), (1978).
- Anita K. Hopper, Fred Banks and Vicky Evangelidis, A yeast mutant which accumulates precursor tRNAs, Cell, 14, 2, (211), (1978).
- Hiroshi Hori, Ken-ichi Higo and Syozo Osawa, The rates of evolution in some ribosomal components, Journal of Molecular Evolution, 9, 3, (191), (1977).
- Daniela RHODES, Initial Stages of the Thermal Unfolding of Yeast Phenylalanine Transfer RNA as Studied by Chemical Modification: The Effect of Magnesium, European Journal of Biochemistry, 81, 1, (91-101), (2008).
- Ross N. Nazar, Studies on the 5' termini of Novikoff ascites hepatoma ribosomal precursor RNA, Biochemistry, 16, 14, (3215), (1977).
- Peter W. Piper, Marilyn Wasserstein, Frode Engbaek, Keld Kaltoft, Julio E. Celis, Jesper Zeuthen, Susan Liebman and Fred Sherman, Nonsense suppressors of Saccharomyces cerevisiae can be generated by mutation of the tyrosine tRNA anticodon, Nature, 262, 5571, (757), (1976).
- Volker A. Erdmann, Structure and Functios of 5 S and 5.8 S RNA, , 10.1016/S0079-6603(08)60586-3, (45-90), (1976).
- Daniela Rhodes, Accessible and inaccessible bases in yeast phenylalanine transfer RNA as studied by chemical modification, Journal of Molecular Biology, 94, 3, (449), (1975).
- Gerald M. Rubin, Chapter 4 Preparation of RNA and Ribosomes from Yeast, Yeast Cells, 10.1016/S0091-679X(08)60951-6, (45-64), (1975).
- Ross N. Nazar, Thomas O. Sitz and Harris Busch, Homologies in eukaryotic 5.8S ribosomal RNA, Biochemical and Biophysical Research Communications, 62, 3, (736), (1975).
- Durwood B. Ray, James S. Franzen and Maurice H. Vaughan, Isolation, characterization, and stability of the 30S ribosomal RNA complex from HeLa cells, Biochemistry, 14, 2, (338), (1975).
- Ross N. Nazar, Thomas O. Sitz and Harris Busch, Heterogeneity in the methylation and 5′ termini of Novikoff ascites hepatoma 5.8 S ribosomal RNA, FEBS Letters, 45, 1-2, (206-212), (2001).
- D. Rhodes, P.W. Piper and B.F.C. Clark, Location of a platinum binding site in the structure of yeast phenylalanine transfer RNA, Journal of Molecular Biology, 89, 3, (469), (1974).
- Konstantin Axt, Sarah L. French, Ann L. Beyer, David Tollervey and Bin Tian, Kinetic Analysis Demonstrates a Requirement for the Rat1 Exonuclease in Cotranscriptional Pre-rRNA Cleavage, PLoS ONE, 10.1371/journal.pone.0085703, 9, 2, (e85703), (2014).




