Free Access

Enzymatic Synthesis of DNA with 4‐Thio‐Thymidine Triphosphate as Substitute for dTTP

A. G. Lezius

Max‐Planck‐Institut für experimentelle Medizin, Abteilung Chemie 34 Göttingen, Herman Rein‐Straße 3, Germany

Search for more papers by this author
K. H. Scheit

Max‐Planck‐Institut für experimentelle Medizin, Abteilung Chemie 34 Göttingen, Herman Rein‐Straße 3, Germany

Search for more papers by this author
First published: December 1967
Cited by: 49

Abstract

When 4‐thio‐thymidine‐5′‐triphosphate is substituted for dTTP in the enzymatic synthesis of poly d(A‐T) by DNA polymerase, formation of a polymer is observed either by incorporation of radioactive labelled deoxyadenosine nucleotide or by a hypochromic effect at 260 mμ and at 335 mμ, the latter corresponding to the ultraviolet absorption of 4‐thio‐thymidine. Both the initial velocity and the extent of polymer synthesis are strictly dependent on the concentration of primer poly d(A‐T). The product for which the designation poly d(A‐4thioT) is proposed contains deoxyadenosine‐ and 4‐thio‐thymidine nucleotide in equal amounts and bears a close resemblance to the parent d(A‐T) polymer with respect to temperature induced helix coil transition. Evidence for enzymatic formation of a hybrid consisting of poly d(A‐BrU) and poly d(A‐4thioT) is given by melting profiles. Poly d(A‐4thioT) is a poor primer for synthesis of poly d(A‐T) and, if dTTP is replaced by 4‐thio‐thymidine triphosphate incorporation of labelled deoxyadenosine nucleotide becomes almost negligible. Moreover, 4‐thio‐thymidine triphosphate cannot replace dTTP when calf thymus DNA or the homopolymer double strands are used as templates. These results cannot be interpreted merely in terms of the classical rules of base pairing, but additional restrictions, e. g. influence of nearest neighbors, might be operating in the enzymatic reaction.

Number of times cited: 49

  • , Polymerase Interactions with Wobble Mismatches in Synthetic Genetic Systems and Their Evolutionary Implications, Biochemistry, 55, 28, (3847), (2016).
  • , Synthesis of 4-thio-5-(2′′-thienyl)uridine and cytotoxicity activity against colon cancer cells in vitro, RSC Advances, 6, 74, (70099), (2016).
  • , Structure, stability, energy barrier and ionization energies of chemically modified DNA-bases: Quantum chemical calculations on 37 favored and rare tautomeric forms of tetraphosphoadenine, Computational and Theoretical Chemistry, 1052, (35), (2015).
  • , 5-Iodo-4-thio-2′-deoxyuridine: Synthesis, Structure, and Cytotoxic Activity, Chemistry Letters, 10.1246/cl.140965, 44, 2, (147-149), (2015).
  • , Structure and Stability of Chemically Modified DNA Bases: Quantum Chemical Calculations on 16 Isomers of Diphosphocytosine, ISRN Physical Chemistry, 2013, (1), (2013).
  • , Gas Chromatography Electron Ionization Mass Spectral Analysis of Thio Analogues of Pyrimidine Bases: 5-Bromo-2,4-di-o-(m- andp-) chloro- (bromo-)benzylthiouracils and 6-methyluracils, International Journal of Spectroscopy, 2012, (1), (2012).
  • , Effect of Sr 2+ association on the tautomerization processes of uracil and its dithio- and diseleno-derivatives , Org. Biomol. Chem., 10.1039/C0OB00292E, 9, 2, (423-431), (2011).
  • , Thio Analogues of Pyrimidine Bases: Syntheses and Spectral Study of New Potentially Biologically Active 2,4-Di-Ortho-(Meta- andPara-)Bromo- (Chloro and Nitro)-Benzylthio-5-Bromouracils (and 6-Methyluracils), Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 7, (1429), (2010).
  • , Synthesis of a 4‐Selenothymidine Phosphoramidite and Incorporation into Oligonucleotides, Current Protocols in Nucleic Acid Chemistry, 32, 1, (1.19.1-1.19.13), (2008).
  • , Origin of reverse stability of diphosphouracil tautomers compared to their analogue uracil: DFT and ab initio study, Journal of Molecular Structure: THEOCHEM, 851, 1-3, (54), (2008).
  • , Theoretical studies on the properties of uracil and its dimer upon thioketo substitution, Theoretical Chemistry Accounts, 10.1007/s00214-008-0442-7, 121, 1-2, (21-31), (2008).
  • , ASSOCIATION OF URACIL WITH 2+ AND THE HYDRATED 2+ : A DFT INVESTIGATION , Journal of Theoretical and Computational Chemistry, 10.1142/S0219633607002927, 06, 02, (197-212), (2007).
  • , Association of Cu2+ with Uracil and Its Thio Derivatives: A Theoretical Study, ChemPhysChem, 5, 12, (1871-1878), (2004).
  • , Insulating Behavior ofλ-DNA on the Micron Scale, Physical Review Letters, 89, 19, (2002).
  • , AM1 and PM3 studies of some thio analogues of pyrimidine bases in the gas and aqueous phases, Journal of Physical Organic Chemistry, 14, 3, (171-179), (2001).
  • , Incorporation of 4-thiothymidine into DNA by the klenow fragment and HIV-1 reverse transcriptase, Bioorganic & Medicinal Chemistry Letters, 10, 9, (907), (2000).
  • , THIO ANALOGS OF PYRIMIDINE BASES: SYNTHESES AND EIMS STUDIES OF NEW 2-(AND 4-) O-(M- ANDP-) HALOBENZYLTHIO-6-METHYLURACILS, Phosphorus, Sulfur, and Silicon and the Related Elements, 118, 1, (205), (1996).
  • , PHOTOINACTIVATION (365 NM) OF VACCINIA AND HERPES SIMPLEX VIRUSES INDUCED BY A NEW BUILT‐IN DNA PHOTOSENSITIZER: 4‐THIOTHYMIDINE, Photochemistry and Photobiology, 61, 5, (463-470), (2008).
  • , Aqueous solvation effect on the prototropic tautomerism of 2‐thiocytosine, Journal of Physical Organic Chemistry, 8, 6, (395-399), (2004).
  • , Semiempirical molecular orbital calculations on the prototropic tautomerism of 2-thiocytosine, Journal of Molecular Structure: THEOCHEM, 251, (195), (1991).
  • , Substitution of uridine in vivo by the intrinsic photoactivable probe 4‐thiouridine in Escherichia coli RNA, European Journal of Biochemistry, 160, 3, (441-449), (2005).
  • , , Helvetica Chimica Acta, 63, 8, (2495-2502), (2004).
  • , Growth of thymine auxotrophs on selected analogs, Biochemical Pharmacology, 28, 9, (1467), (1979).
  • , , Helvetica Chimica Acta, 61, 7, (2579-2588), (2004).
  • , Synthetic Oligodeoxynucleotides for Analyses of DNA Structure and Function, , 10.1016/S0079-6603(08)60268-8, (101-141), (1978).
  • , The Stereochemical Basis of Template Function, European Journal of Biochemistry, 72, 1, (191-200), (2008).
  • , , Helvetica Chimica Acta, 60, 4, (1182-1195), (2004).
  • , Polydesoxynucleotide als DNA-Modelle, Die Naturwissenschaften, 61, 10, (434), (1974).
  • , The Relationship between Hydrogen Bonding and Base Stacking in Crystalline 4‐Thiouridine Derivatives, European Journal of Biochemistry, 32, 3, (473-478), (2005).
  • , Reversible blocking of DNA transcription of E. coli DNA dependent RNA polymerase with thiopyrimidine nucleotides, Biochemical and Biophysical Research Communications, 55, 3, (873), (1973).
  • , Synthesis of ribonucleic acid containing 6-thioguanylic acid residues, Biochemistry, 12, 5, (914), (1973).
  • , Double‐Stranded Polydeoxyribonucleotides Containing 6‐Thiodeoxyguanosine and 6‐Thiodeoxyinosine, European Journal of Biochemistry, 27, 2, (381-387), (2005).
  • , Synthesis and properties of oligodeoxy-4-thiothymidylic acid, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 287, 3, (427), (1972).
  • , Replication and the Biosynthesis of DNA, The Biochemistry of the Nucleic Acids, 10.1016/B978-0-12-205350-4.50018-4, (233-289), (1972).
  • , The Synthesis of the Alternating Copolymer Poly [r(A‐s4U)] by RNA Polymerase of Escherichia coli, European Journal of Biochemistry, 19, 3, (379-385), (2005).
  • , Synthese von 5′‐Mono‐, 5′‐Di‐ und 5′‐Triphosphaten der Nucleoside 2.4‐Dithio‐uridin, 2.4‐Dithio‐ribothymidin, 2‐Thiothymidin und 2.4‐Dithio‐thymidin, Chemische Berichte, 104, 2, (456-460), (2006).
  • , Die Konformation des Arabinonucleosids 1‐β‐D‐Arabinofuranosyl‐4‐thiouracil, Angewandte Chemie, 83, 5, (174-174), (2006).
  • , Conformation of the Arabinonucleoside 1‐β‐D‐Arabinofuranosyl‐4‐thiouracil, Angewandte Chemie International Edition in English, 10, 3, (187-188), (2003).
  • , Synthesis of Poly[d(A‐s4T) · d(A‐s4T)] by Bacillus subtilis DNA Polymerase, European Journal of Biochemistry, 24, 1, (163-167), (2005).
  • , A Synthetic DNA with Unusual Base‐Pairing, European Journal of Biochemistry, 24, 1, (168-182), (2005).
  • , Base pairing of a transfer RNA minor constituent: Geometry of the 1-methyl-4-thiouracil · 9-methyladenine base pair, Journal of Molecular Biology, 60, 1, (87), (1971).
  • , Structural and spectral properties of 2,4‐dithiouridine, FEBS Letters, 10, 1, (41-45), (2001).
  • , Synthesis and Charactrisation of a Copolymer Consisting of Alternating Deoxyadenosine‐ and 2‐Thiodeoxythymidine Nucleotides, European Journal of Biochemistry, 14, 1, (154-160), (2005).
  • , The enzymatic synthesis of poly 4-thiouridylic acid by polynucleotide phosphorylase from Escherichia coli, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 204, 2, (371), (1970).
  • , , Chemische Berichte, 103, 5, (1307-1311), (2006).
  • , Crystal and molecular structure of 3′‐O‐acetyl‐2′‐deoxy‐4‐thiothymidine, FEBS Letters, 5, 4, (262-264), (2001).
  • , Specificity and Function of Exonuclease II in the Synthesis of Alternating Copolymers by DNA Polymerase, European Journal of Biochemistry, 9, 3, (325-334), (2005).
  • , Modified nucleotides as tools in nucleic acid research, Accounts of Chemical Research, 2, 11, (338), (1969).
  • , Die synthese von desoxy-4-thiothymidin-3′,5′-diphosphat, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 157, 3, (632), (1968).