Enzymatic Synthesis of DNA with 4‐Thio‐Thymidine Triphosphate as Substitute for dTTP
Abstract
When 4‐thio‐thymidine‐5′‐triphosphate is substituted for dTTP in the enzymatic synthesis of poly d(A‐T) by DNA polymerase, formation of a polymer is observed either by incorporation of radioactive labelled deoxyadenosine nucleotide or by a hypochromic effect at 260 mμ and at 335 mμ, the latter corresponding to the ultraviolet absorption of 4‐thio‐thymidine. Both the initial velocity and the extent of polymer synthesis are strictly dependent on the concentration of primer poly d(A‐T). The product for which the designation poly d(A‐4thioT) is proposed contains deoxyadenosine‐ and 4‐thio‐thymidine nucleotide in equal amounts and bears a close resemblance to the parent d(A‐T) polymer with respect to temperature induced helix coil transition. Evidence for enzymatic formation of a hybrid consisting of poly d(A‐BrU) and poly d(A‐4thioT) is given by melting profiles. Poly d(A‐4thioT) is a poor primer for synthesis of poly d(A‐T) and, if dTTP is replaced by 4‐thio‐thymidine triphosphate incorporation of labelled deoxyadenosine nucleotide becomes almost negligible. Moreover, 4‐thio‐thymidine triphosphate cannot replace dTTP when calf thymus DNA or the homopolymer double strands are used as templates. These results cannot be interpreted merely in terms of the classical rules of base pairing, but additional restrictions, e. g. influence of nearest neighbors, might be operating in the enzymatic reaction.
Number of times cited: 49
- Christian B. Winiger, Myong-Jung Kim, Shuichi Hoshika, Ryan W. Shaw, Jennifer D. Moses, Mariko F. Matsuura, Dietlind L. Gerloff and Steven A. Benner, Polymerase Interactions with Wobble Mismatches in Synthetic Genetic Systems and Their Evolutionary Implications, Biochemistry, 55, 28, (3847), (2016).
- Xiaohui Zhang, Depeng Li, Jianzhong Qin, Yaozhong Xu and Kedong Ma, Synthesis of 4-thio-5-(2′′-thienyl)uridine and cytotoxicity activity against colon cancer cells in vitro, RSC Advances, 6, 74, (70099), (2016).
- Muneerah M. Al-Mogren and Tarek M. El-Gogary, Structure, stability, energy barrier and ionization energies of chemically modified DNA-bases: Quantum chemical calculations on 37 favored and rare tautomeric forms of tetraphosphoadenine, Computational and Theoretical Chemistry, 1052, (35), (2015).
- Xiao-Hui Zhang, Hong-Yan Yin, Giuseppe Trigiante, Reto Brem, Peter Karran, Mateusz B. Pitak, Simon J. Coles and Yao-Zhong Xu, 5-Iodo-4-thio-2′-deoxyuridine: Synthesis, Structure, and Cytotoxic Activity, Chemistry Letters, 10.1246/cl.140965, 44, 2, (147-149), (2015).
- Abdullah G. Al-Sehemi, Tarek M. El-Gogary, Karl Peter Wolschann and Gottfried Koehler, Structure and Stability of Chemically Modified DNA Bases: Quantum Chemical Calculations on 16 Isomers of Diphosphocytosine, ISRN Physical Chemistry, 2013, (1), (2013).
- G. Bartkowiak, E. Wyrzykiewicz and G. Schroeder, Gas Chromatography Electron Ionization Mass Spectral Analysis of Thio Analogues of Pyrimidine Bases: 5-Bromo-2,4-di-o-(m- andp-) chloro- (bromo-)benzylthiouracils and 6-methyluracils, International Journal of Spectroscopy, 2012, (1), (2012).
- Ane Eizaguirre, Otilia Mó, Manuel Yáñez and Russell J. Boyd, Effect of Sr 2+ association on the tautomerization processes of uracil and its dithio- and diseleno-derivatives , Org. Biomol. Chem., 10.1039/C0OB00292E, 9, 2, (423-431), (2011).
- Grażyna Bartkowiak, Elżbieta Wyrzykiewicz, Grzegorz Schroeder, Anna Walkowiak, Anna Szponar and Ilona Pawlak, Thio Analogues of Pyrimidine Bases: Syntheses and Spectral Study of New Potentially Biologically Active 2,4-Di-Ortho-(Meta- andPara-)Bromo- (Chloro and Nitro)-Benzylthio-5-Bromouracils (and 6-Methyluracils), Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 7, (1429), (2010).
- Jia Sheng and Zhen Huang, Synthesis of a 4‐Selenothymidine Phosphoramidite and Incorporation into Oligonucleotides, Current Protocols in Nucleic Acid Chemistry, 32, 1, (1.19.1-1.19.13), (2008).
- Tarek M. El-Gogary and Ahmed M. El-Nahas, Origin of reverse stability of diphosphouracil tautomers compared to their analogue uracil: DFT and ab initio study, Journal of Molecular Structure: THEOCHEM, 851, 1-3, (54), (2008).
- Weihua Wang, Nana Wang, Ping Li, Yuxiang Bu, Xiaoyan Xie and Rui Song, Theoretical studies on the properties of uracil and its dimer upon thioketo substitution, Theoretical Chemistry Accounts, 10.1007/s00214-008-0442-7, 121, 1-2, (21-31), (2008).
- NANA WANG, PING LI, YI HU, YUXIANG BU, WEIHUA WANG and XIAOYAN XIE, ASSOCIATION OF URACIL WITH 2+ AND THE HYDRATED 2+ : A DFT INVESTIGATION , Journal of Theoretical and Computational Chemistry, 10.1142/S0219633607002927, 06, 02, (197-212), (2007).
- Al Mokhtar Lamsabhi, Manuel Alcamí, Otilia Mó, Manuel Yáñez and Jeanine Tortajada, Association of Cu2+ with Uracil and Its Thio Derivatives: A Theoretical Study, ChemPhysChem, 5, 12, (1871-1878), (2004).
- Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox and N. P. Ong, Insulating Behavior ofλ-DNA on the Micron Scale, Physical Review Letters, 89, 19, (2002).
- Pervin Ünal Civcir, AM1 and PM3 studies of some thio analogues of pyrimidine bases in the gas and aqueous phases, Journal of Physical Organic Chemistry, 14, 3, (171-179), (2001).
- Tata Venkata S Rao, Martin T Haber, Jane M Sayer and Donald M Jerina, Incorporation of 4-thiothymidine into DNA by the klenow fragment and HIV-1 reverse transcriptase, Bioorganic & Medicinal Chemistry Letters, 10, 9, (907), (2000).
- ElŻBieta Wyrzykiewicz and ZdzisŁAwa Nowakowska, THIO ANALOGS OF PYRIMIDINE BASES: SYNTHESES AND EIMS STUDIES OF NEW 2-(AND 4-) O-(M- ANDP-) HALOBENZYLTHIO-6-METHYLURACILS, Phosphorus, Sulfur, and Silicon and the Related Elements, 118, 1, (205), (1996).
- Arban Domi, Martchela Siromachkova, Jean‐Louis Fourrey, Alain Favre and Georges Beaud, PHOTOINACTIVATION (365 NM) OF VACCINIA AND HERPES SIMPLEX VIRUSES INDUCED BY A NEW BUILT‐IN DNA PHOTOSENSITIZER: 4‐THIOTHYMIDINE, Photochemistry and Photobiology, 61, 5, (463-470), (2008).
- J. Guillermo Contreras and Joel B. Alderete, Aqueous solvation effect on the prototropic tautomerism of 2‐thiocytosine, Journal of Physical Organic Chemistry, 8, 6, (395-399), (2004).
- J.Guillermo Contreras, Joel B. Alderete and Juan A. Gnecco, Semiempirical molecular orbital calculations on the prototropic tautomerism of 2-thiocytosine, Journal of Molecular Structure: THEOCHEM, 251, (195), (1991).
- Alain FAVRE, Roberto BEZERRA, Eliane HAJNSDORF, Yolande LEMAIGRE DUBREUIL and Alain EXPERT‐BEZANÇON, Substitution of uridine in vivo by the intrinsic photoactivable probe 4‐thiouridine in Escherichia coli RNA, European Journal of Biochemistry, 160, 3, (441-449), (2005).
- Michael Wachtl, Peter Kohler and Christoph Tamm, , Helvetica Chimica Acta, 63, 8, (2495-2502), (2004).
- William E. White and Maureen D. Dollinger, Growth of thymine auxotrophs on selected analogs, Biochemical Pharmacology, 28, 9, (1467), (1979).
- Ernst Volz and Christoph Tamm, , Helvetica Chimica Acta, 61, 7, (2579-2588), (2004).
- Ray Wu, Chander P. Bahl and Saran A. Narang, Synthetic Oligodeoxynucleotides for Analyses of DNA Structure and Function, , 10.1016/S0079-6603(08)60268-8, (101-141), (1978).
- Hans Richard RACKWITZ and Karl Heinz SCHEIT, The Stereochemical Basis of Template Function, European Journal of Biochemistry, 72, 1, (191-200), (2008).
- Nico Cerletti and Christoph Tamm, , Helvetica Chimica Acta, 60, 4, (1182-1195), (2004).
- Karl Wulff, Polydesoxynucleotide als DNA-Modelle, Die Naturwissenschaften, 61, 10, (434), (1974).
- Wolfram Saenger and Dietrich SUCK, The Relationship between Hydrogen Bonding and Base Stacking in Crystalline 4‐Thiouridine Derivatives, European Journal of Biochemistry, 32, 3, (473-478), (2005).
- Peter Faerber, Reversible blocking of DNA transcription of E. coli DNA dependent RNA polymerase with thiopyrimidine nucleotides, Biochemical and Biophysical Research Communications, 55, 3, (873), (1973).
- J. L. Darlix, P. Fromageot and E. Reich, Synthesis of ribonucleic acid containing 6-thioguanylic acid residues, Biochemistry, 12, 5, (914), (1973).
- Hartmut H. BEIKIRCH and Axel G. LEZIUS, Double‐Stranded Polydeoxyribonucleotides Containing 6‐Thiodeoxyguanosine and 6‐Thiodeoxyinosine, European Journal of Biochemistry, 27, 2, (381-387), (2005).
- W. Bähr, H. Sommer and K.H. Scheit, Synthesis and properties of oligodeoxy-4-thiothymidylic acid, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 287, 3, (427), (1972).
- J.N. DAVIDSON, Replication and the Biosynthesis of DNA, The Biochemistry of the Nucleic Acids, 10.1016/B978-0-12-205350-4.50018-4, (233-289), (1972).
- Friedrich Cramer, Ellen M. Gottschalk, Hans Matzura, Karl‐Heinz Scheit and Hans Sternbach, The Synthesis of the Alternating Copolymer Poly [r(A‐s4U)] by RNA Polymerase of Escherichia coli, European Journal of Biochemistry, 19, 3, (379-385), (2005).
- Peter Faerber and Karl Heinz Scheit, Synthese von 5′‐Mono‐, 5′‐Di‐ und 5′‐Triphosphaten der Nucleoside 2.4‐Dithio‐uridin, 2.4‐Dithio‐ribothymidin, 2‐Thiothymidin und 2.4‐Dithio‐thymidin, Chemische Berichte, 104, 2, (456-460), (2006).
- Wolfram Saenger and Volker Jacobi, Die Konformation des Arabinonucleosids 1‐β‐D‐Arabinofuranosyl‐4‐thiouracil, Angewandte Chemie, 83, 5, (174-174), (2006).
- Wolfram Saenger and Volker Jacobi, Conformation of the Arabinonucleoside 1‐β‐D‐Arabinofuranosyl‐4‐thiouracil, Angewandte Chemie International Edition in English, 10, 3, (187-188), (2003).
- Axel G. Lezius and Ute Rath, Synthesis of Poly[d(A‐s4T) · d(A‐s4T)] by Bacillus subtilis DNA Polymerase, European Journal of Biochemistry, 24, 1, (163-167), (2005).
- Ellen M. Gottschalk, Elske Kopp and Axel G. Lezius, A Synthetic DNA with Unusual Base‐Pairing, European Journal of Biochemistry, 24, 1, (168-182), (2005).
- Wolfram Saettger and Dietrich Suck, Base pairing of a transfer RNA minor constituent: Geometry of the 1-methyl-4-thiouracil · 9-methyladenine base pair, Journal of Molecular Biology, 60, 1, (87), (1971).
- P. Faerber, W. Saenger, K.H. Scheit and D. Suck, Structural and spectral properties of 2,4‐dithiouridine, FEBS Letters, 10, 1, (41-45), (2001).
- Axel G. Lezius, Synthesis and Charactrisation of a Copolymer Consisting of Alternating Deoxyadenosine‐ and 2‐Thiodeoxythymidine Nucleotides, European Journal of Biochemistry, 14, 1, (154-160), (2005).
- J. Simuth, K.H. Scheit and E.M. Gottschalk, The enzymatic synthesis of poly 4-thiouridylic acid by polynucleotide phosphorylase from Escherichia coli, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 204, 2, (371), (1970).
- Peter Faerber and Karl‐Heinz Scheit, , Chemische Berichte, 103, 5, (1307-1311), (2006).
- W. Saenger, D. Suck and K.H. Scheit, Crystal and molecular structure of 3′‐O‐acetyl‐2′‐deoxy‐4‐thiothymidine, FEBS Letters, 5, 4, (262-264), (2001).
- A. G. Lezius and E. Metz, Specificity and Function of Exonuclease II in the Synthesis of Alternating Copolymers by DNA Polymerase, European Journal of Biochemistry, 9, 3, (325-334), (2005).
- Friedrich Cramer, Modified nucleotides as tools in nucleic acid research, Accounts of Chemical Research, 2, 11, (338), (1969).
- K.-H. Scheit, Die synthese von desoxy-4-thiothymidin-3′,5′-diphosphat, Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 157, 3, (632), (1968).




