Journal list menu
A monoclonal antibody raised against an [Na+K+]coupled l-glutamate transporter purified from rat brain confirms glial cell localization
Line M. Levy
Anatomical Institute, University of Oslo, P.O.B. 1105 Biindern, N-0317 Oslo, Norway
Search for more papers by this authorKnut P. Lehre
Anatomical Institute, University of Oslo, P.O.B. 1105 Biindern, N-0317 Oslo, Norway
Search for more papers by this authorBent Rolstad
Anatomical Institute, University of Oslo, P.O.B. 1105 Biindern, N-0317 Oslo, Norway
Search for more papers by this authorCorresponding Author
Niels C. Danbolt
Anatomical Institute, University of Oslo, P.O.B. 1105 Biindern, N-0317 Oslo, Norway
Correspondence address: N.C. Danbolt, Anatomical Institute, University of Oslo, P.O.Box 1105, Blindern, N-0317 OsloNorway. Fax: (47) (2) 85 12 78.Search for more papers by this authorLine M. Levy
Anatomical Institute, University of Oslo, P.O.B. 1105 Biindern, N-0317 Oslo, Norway
Search for more papers by this authorKnut P. Lehre
Anatomical Institute, University of Oslo, P.O.B. 1105 Biindern, N-0317 Oslo, Norway
Search for more papers by this authorBent Rolstad
Anatomical Institute, University of Oslo, P.O.B. 1105 Biindern, N-0317 Oslo, Norway
Search for more papers by this authorCorresponding Author
Niels C. Danbolt
Anatomical Institute, University of Oslo, P.O.B. 1105 Biindern, N-0317 Oslo, Norway
Correspondence address: N.C. Danbolt, Anatomical Institute, University of Oslo, P.O.Box 1105, Blindern, N-0317 OsloNorway. Fax: (47) (2) 85 12 78.Search for more papers by this authorAbstract
A monoclonal antibody (9C4) shows that an [Na+K+]coupled glutamate transporter protein purified from rat brain runs electrophoretically as a wide band and is localized in neuroglial cell bodies and processes, but not in neurons. This confirms the findings with polyclonal antibodies [Neuroscience 51 (1992) 295-310], and shows that the apparent heterogeneity in relative molecular mass is accounted for by a single antigenic epitope. By testing several synthetic peptides derived from the deduced amino acid sequences of two cloned rat brain glutamate transporters, the antigenic epitope was identified as residing within the peptide TQSVYDDTKNHRESNSNQC (residues 518–536) of one of these [Nature 360 (1992) 464-467].
References
- 1 B.I. Kanner, S. Schuldiner, CRC Crit. Rev. Biochem., 22, (1987), 1– 38.
- 2 O.P. Ottersen, J. Storm-Mathisen, Classical Transmitters and Transmitter Receptors in the CNS. Part II A. Björklund T. Hökfelt M.J. Kuhar Handbook of Chemical Neuroanatomy 3, (1984), Elsevier Amsterdam 141– 246.
- 3 F. Fonnum, J. Neurochem., 42, (1984), 1– 11.
- 4 G.L. Collingridge, R.A.J. Lester, Pharmacol. Rev., 40, (1989), 143– 210.
- 5 P.M. Headley, S. Grillner, Trends Pharmacol. Sci., 11, (1990), 205– 211.
- 6 G.A.R. Johnston, P.J. Roberts J. Storm-Mathisen G.A.R. Johnston Glutamate: Transmitter in the Central Nervous System (1981), Wiley Chichester, New York, Brisbane, Toronto 77– 87.
- 7 G.J. McBean, P.J. Roberts, J. Neurochem, 44, (1985), 247– 254.
- 8 D. Nieholls, D. Attwell, Trends Pharmacol. Sci., 11, (1990), 462– 468.
- 9 G. Garthwaite, G.D. Williams, J. Garthwaite, Eur. J. Neurosci., 4, (1992), 353– 360.
- 10 J.W. Olney, Biol. Psych., 26, (1989), 505– 525.
- 11 D.W. Choi, S.M. Rothman, Annu. Rev. Neurosci., 13, (1990), 171– 182.
- 12 M.P. Mattson, Neuron, 2, (1990), 105– 117.
- 13 J.D. Rothstein, L.J. Martin, R.W. Kuncl, N. Engl. J. Med., 326, (1992), 1464– 1468.
- 14 N.C. Danbolt, G. Pines, B.I. Kanner, Biochemistry, 29, (1990), 6734– 6740.
- 15 N.C. Danbolt, J. Storm-Mathisen, B.I. Kanner, Neuroscience, 51, (1992), 295– 310.
- 16 G. Pines, N.C. Danbolt, M. Bjørås, Y. Zhang, A. Bendahan, L. Eide, H. Koepsell, J. Storm-Mathisen, E. Seeberg, B.I. Kanner, Nature, 360, (1992), 464– 467.
- 17 T. Storck, S. Schulte, K. Hofmann, W. Stoffel, Proc. Natl. Acad. Sci. USA, 89, (1992), 10955– 10959.
- 18 O.H. Lowry, N.J. Rosebrough, A.L. Farr, R.J. Randall, J. Biol. Chem., 193, (1951), 265– 275.
- 19 Mourik P. Van, R.A. Rivero, der Kwast T.H. Van, P.M. Lansdorp, W.P. Zeijlemaker, J. Immunol. Methods, 68, (1984), 45– 53.
- 20 P. Koolwijk, E. Rozemuller, R.K. Stad, Lau W.B.M. De, B.J.E.G. Bast, Hybridoma, 7, (1988), 217– 225.
- 21 G. Köhler, C. Milstein, Nature, 256, (1975), 495– 497.
- 22 U.K. Laemmli, Nature, 227, (1970), 680– 685.
- 23 H. Towbin, T. Staehelin, J. Gordon, Proc. Natl. Acad. Sci. USA, 76, (1979), 4350– 4354.
- 24 J.P. Briand, S. Muller, Regenmortel M.H.V. Van, J. Immunol. Methods, 78, (1985), 59–
- 25 K.E. Smith, L.A. Borden, P.R. Hartig, T. Branchek, R.L. Weinshank, Neuron, 8, (1992), 927– 935.
- 26 J. Guastella, N. Nelson, H. Nelson, L. Czyzyk, S. Keynan, M.C. Miedel, N. Davidson, H.A. Lester, B.I. Kanner, Science, 249, (1990), 1303– 1306.
- 27 R.T. Fremeau Jr., M.C Caron, R.D. Blakely, Neuron, 8, (1992), 915– 926.
- 28 T. Taxt, J. Storm-Mathisen, Neuroscience, 11, (1984), 79– 100.
- 29 D. Goldowitz, S.W. Scheff, C.W. Cotman, Brain Res., 170, (1979), 427– 441.
- 30 R. Radian, O.P. Ottersen, J. Storm-Mathisen, M. Castel, B.I. Kanner, J. Neurosci., 10, (1990), 1319– 1330.
- 31 R. Radian, A. Bendahan, B.I. Kanner, J. Biol. Chem., 261, (1986), 15437– 15441.
- 32 Y. Stern-Bach, N. Greenberg-Ofrath, I. Flechner, S. Schuldiner, J. Biol. Chem., 265, (1990), 3961– 3966.
- 33 B. López-Corcuera, J. Vázquez, C. Aragón, J. Biol. Chem., 266, (1991), 24809– 24814.
- 34 B. Hees, N.C. Danbolt, K.I. Kanner, W. Haase, K. Heitmann, H. Koepsell, J. Biol. Chem., 267, (1992), 23275– 23281.
- 35 Y. Kanai, M.A. Hediger, Nature, 360, (1992), 467– 471.