Journal list menu
Biologically relevant metal ion-dependent hydroxyl radical generation An update
Barry Halliwell
Pulmonary-Critical Care Medicine, U.C. Davis Medical Center, 4301 X Street, Sacramento, CA 95817, USA
Search for more papers by this authorJohn M.C. Gutteridge
Oxygen Chemistry Laboratory, Department of Anesthesia and Intensive Care, Royal Brompton Hospital, National Heart and Lung Institute, Sydney Street, London SW3 6LY, UK
Search for more papers by this authorBarry Halliwell
Pulmonary-Critical Care Medicine, U.C. Davis Medical Center, 4301 X Street, Sacramento, CA 95817, USA
Search for more papers by this authorJohn M.C. Gutteridge
Oxygen Chemistry Laboratory, Department of Anesthesia and Intensive Care, Royal Brompton Hospital, National Heart and Lung Institute, Sydney Street, London SW3 6LY, UK
Search for more papers by this authorAbstract
Transition metal ions, especially iron, appear to be important mediators of oxidative damage in vivo. Iron(II) reacts with H2O2 to give more-reactive radicals. On the basis of ESR spin-trapping data with DMPO, supported by aromatic hydroxylation studies and patterns of DNA base modification, it is concluded that hydroxyl radical (OH•) is likely to be the major damaging species formed in Fenton Systems under biologically-relevant conditions (which include iron concentrations no higher than the micromolar range). Although reactive oxo-iron species (such as ferryl and perferryl) may also be important, chemical evidence for their formation and identity in biologically relevant Fenton systems is currently lacking. Studies at alkaline pH values show that iron(IV) and iron(V) species are highly oxidizing under those reaction conditions, with a pattern of reactivity different from that of OH•.
References
- 1
Sonntag C. Von,
The Chemical Basis of Radiation Biology
(1987),
Taylor and Francis
London
- 2
B. Halliwell,
J.M.C. Gutteridge,
Second Edition
Free Radicals in Biology and Medicine
(1989),
Clarendon Press
Oxford
- 3
S. Steenken,
Chem. Rev.,
89,
(1989),
503–
520.
- 4
M. Dizdaroglu,
Methods Enzymol.,
193,
(1990),
842–
857.
- 5
B. Halliwell,
O.I. Aruoma,
FEBS Lett.,
281,
(1991),
9–
19.
- 6
L.H. Breimer,
Free Radical Res. Commun.,
14,
(1991),
159–
171.
- 7
J.R. Wagner,
C.C. Hu,
B.N. Ames,
Proc. Natl. Acad. Sci. USA,
89,
(1992),
3380–
3384.
- 8
W.G. Stillwell,
H.X. Xu,
J.A. Adkins,
J.S. Wishnock,
S.R. Tannenbaum,
Chem. Res. Tox.,
2,
(1989),
94–
99.
- 9
B. Chance,
H. Sies,
A. Boveris,
Physiol. Rev.,
59,
(1979),
527–
605.
- 10
I. Fridovich,
J. Biol. Chem.,
264,
(1989),
7761–
7764.
- 11
B.M. Babior,
R.C. Woodman,
Semin. Hematol.,
27,
(1990),
247–
259.
- 12
F.E. Maly,
Free Radical Res. Commun.,
8,
(1990),
143–
148.
- 13
C.F. Babbs,
M.D. Cregor,
J.J. Turek,
S.F. Badylak,
Lab. Invest.,
65,
(1991),
484–
496.
- 14
G.A.C. Murrell,
M.J.O. Francis,
L. Bromley,
Biochem. J.,
265,
(1990),
659–
665.
- 15
D. Touati,
Free Radical Res. Commun.,
8,
(1989),
1–
8.
- 16
P. Amstad,
A. Peskin,
G. Shah,
M.E. Mirault,
R. Moret,
I. Zbinden,
P. Cerutti,
Biochemistry,
30,
(1991),
9305–
9313.
- 17
L.A. Tartaglia,
C.J. Gimenos,
G. Storz,
B.N. Ames,
J. Biol. Chem.,
267,
(1992),
2038–
2045.
- 18
B. Halliwell,
J.M.C. Gutteridge,
Arch. Biochem. Biophys.,
246,
(1986),
501–
514.
- 19
B.H.J. Bielski,
D.E. Cabelli,
Int. J. Radiat. Biol.,
59,
(1991),
291–
319.
- 20
P.R. Gardner,
I. Fridovich,
J. Biol. Chem.,
266,
(1991),
19328–
19333.
- 21
B.L. Fanburg,
D.J. Massaro,
P.A. Certutti,
D.B. Gail,
M.A. Berberich,
Am. J. Physiol.,
262,
(1992),
L235–
L241.
- 22
C. Beauchamp,
I. Fridovich,
J. Biol. Chem.,
245,
(1970),
4641–
4646.
- 23
J.S. Beckman,
T.W. Beckman,
J. Chen,
P.A. Marshall,
B.A. Freeman,
Proc. Natl. Acad. Sci. USA,
87,
(1990),
1620–
1624.
- 24
H. Hogg,
V.M. Darley-Usmar,
M.T. Wilson,
S. Moncada,
Biochem. J.,
281,
(1992),
419–
424.
- 25
J. Kanner,
S. Harel,
R. Granit,
Arch. Biochem. Biophys.,
289,
(1991),
130–
136.
- 26
G.M. Rubanyi,
E.H. Ho,
E.H. Cantor,
W.C. Lumma,
L.H.P. Botelho,
Biochem. Biophys. Res. Commun.,
181,
(1991),
1392–
1397.
- 27
B. Halliwell,
Free Radical Res. Commun.,
5,
(1989),
315–
318.
- 28
B. Halliwell,
J.M.C. Gutteridge,
Methods Enzymol.,
186,
(1990),
1–
85.
- 29
J.D. Rush,
W.H. Koppenol,
J. Biol. Chem.,
261,
(1986),
6730–
6733.
- 30
Z. Maskos,
W.H. Koppenol,
Free Rad. Biol. Med.,
11,
(1991),
609–
610.
- 31
J.M.C. Gutteridge,
L. Maidt,
L. Poyer,
Biochem. J.,
269,
(1990),
169–
174.
- 32
C. Walling,
Acc. Chem. Res.,
8,
(1975),
125–
132.
- 33
M. Fitchett,
B.C. Gilbert,
M. Jeff,
Phil. Trans R. Soc. Lond.,
B311,
(1985),
517–
529.
- 34
I. Yamazaki,
L.H. Piette,
J. Am. Chem. Soc.,
113,
(1991),
7588–
7759.
- 35
S. Croft,
B.C. Gilbert,
Smith J.R. Lindsay,
A.C. Whitwood,
Free Radical Res. Commun.,
(1992),
in the press
- 36
B.H.J. Bielski,
Free Radical Res. Commun.,
12,
(1991),
469–
477.
- 37
V.K. Sharma,
B.H.J. Bielski,
Inorg. Chem.,
30,
(1991),
4306–
4310.
- 38
B. Halliwell,
J.M.C. Gutteridge,
M. Grootveld,
Methods Biochem. Anal.,
33,
(1988),
59–
90.
- 39
I. Yamazaki,
L.H. Piette,
J. Biol. Chem.,
265,
(1990),
13589–
13594.
- 40
E. Finkelstein,
G.M. Rosen,
E.J. Rauckman,
Arch. Biochem. Biophys.,
200,
(1980),
1–
16.
- 41
M.J. Burkitt,
R.P. Mason,
Proc. Natl. Acad. Sci. USA,
88,
(1991),
8440–
8444.
- 42
J.D. Feix,
B. Kalyanaraman,
Arch. Biochem. Biophys.,
291,
(1991),
43–
51.
- 43
D.H. Petering,
R.W. Byrnes,
W.E. Antholine,
Chem. Biol. Interac.,
73,
(1990),
133–
182.
- 44
E. Gajewski,
O.I. Aruoma,
M. Dizdaroglu,
B. Halliwell,
Biochemistry,
30,
(1991),
2444–
2448.
- 45
S. Rahhal,
H.W. Richter,
J. Am. Chem. Soc.,
110,
(1988),
3126–
3133.
- 46
J.M.C. Gutteridge,
I. Zs-Nagy,
L. Maidt,
R.A. Floyd,
Arch. Biochem. Biophys.,
277,
(1990),
422–
428.
- 47
B. Halliwell,
J.M.C. Gutteridge,
Arch. Biochem. Biophys.,
280,
(1990),
1–
8.
- 48
J.M.C. Gutteridge,
B. Halliwell,
Life Chem. Rep.,
4,
(1987),
113–
142.
- 49
R. Stocker,
B. Frei,
H. Sies
Oxidative Stress, Oxidants and Antioxidants
(1991),
Academic Press
New York
- 50
E.R. Stadtman,
C.N. Oliver,
J. Biol. Chem.,
266,
(1991),
2005–
2008.
- 51
A.W. Nienhuis,
New Engl. J. Med.,
304,
(1981),
170–
171.
- 52
J.M.C. Gutteridge,
Biochem. J.,
218,
(1984),
983–
985.
- 53
P.J. Evans,
A. Bomford,
B. Halliwell,
Free Radical Res. Commun.,
7,
(1989),
55–
62.
- 54
S.D. Aust,
L.A. Morehouse,
C.E. Thomas,
Adv. Free Rad. Biol. Med.,
1,
(1985),
3–
23.
- 55
C.G. Cochrane,
Mol. Aspects Med.,
12,
(1991),
137–
147.
- 56
J.A. Imlay,
S. Linn,
Science,
240,
(1988),
1302–
1309.
- 57
S.P. Wolff,
M.J.C. Crabbe
Diabetic Complications
(1987),
Churchill Livingstone
Edinburgh
- 58
J.L. Farber,
Chem. Res. Tox.,
3,
(1990),
503–
508.
- 59
M. Ferrali,
L. Ciccoli,
C. Signorini,
M. Comporti,
Biochem. Pharmacol.,
40,
(1990),
1485–
1490.
- 60
B.E. Britigan,
B.L. Edeker,
J. Clin. Invest.,
88,
(1991),
1092–
1102.
- 61
P.D. Walker,
S.V. Shah,
Kidney Int.,
40,
(1991),
891–
898.
- 62
L. Frank,
Free Rad. Biol. Med.,
11,
(1991),
341–
348.
- 63
A.C. Mello-Filho,
R. Meneghini,
Mut. Res.,
251,
(1991),
109–
113.
- 64
D.L. Bissett,
R. Chatterjee,
D.P. Hannon,
Photochem. Photobiol.,
54,
(1991),
215–
223.
- 65
R.L. Howard,
B. Buddington,
A.C. Allfrey,
Kidney Int.,
40,
(1991),
923–
926.
- 66
K. Sai,
S. Uchiyama,
Y. Ohno,
R. Hasegawa,
Y. Kurokawa,
Carcinogenesis,
13,
(1992),
333–
339.
- 67
C. Bernofsky,
B.M.R. Bandara,
O. Hingosa,
Free Rad. Biol. Med.,
8,
(1990),
231–
239.