Journal list menu
Tumour necrosis factor is a compact trimer
Paul Wingfield
Biogen S.A. 3 route de Troinex, F-1227 Carouge, Geneva, Switzerland
Search for more papers by this authorCorresponding Author
Roger H. Pain
Biogen S.A. 3 route de Troinex, F-1227 Carouge, Geneva, Switzerland
Department of Biochemistry, University of Newcastle, Newcastle upon Tyne, NE1 7RU, England
Correspondence address: R.H. Pain, Dept of Bio-chemistry, University of Newcastle, Newcastle upon Tyne, NE1 7RU, England.Search for more papers by this authorStewart Craig
Biogen S.A. 3 route de Troinex, F-1227 Carouge, Geneva, Switzerland
Department of Biochemistry, University of Newcastle, Newcastle upon Tyne, NE1 7RU, England
Search for more papers by this authorPaul Wingfield
Biogen S.A. 3 route de Troinex, F-1227 Carouge, Geneva, Switzerland
Search for more papers by this authorCorresponding Author
Roger H. Pain
Biogen S.A. 3 route de Troinex, F-1227 Carouge, Geneva, Switzerland
Department of Biochemistry, University of Newcastle, Newcastle upon Tyne, NE1 7RU, England
Correspondence address: R.H. Pain, Dept of Bio-chemistry, University of Newcastle, Newcastle upon Tyne, NE1 7RU, England.Search for more papers by this authorStewart Craig
Biogen S.A. 3 route de Troinex, F-1227 Carouge, Geneva, Switzerland
Department of Biochemistry, University of Newcastle, Newcastle upon Tyne, NE1 7RU, England
Search for more papers by this authorAbstract
Recombinant produced human tumour necrosis factor (TNF) has been studied to characterise the subunit structure of the protein. TNF is shown to be a trimer M r 52000 in which the subunits are associated in a compact, triangular form. In secondary structure it belongs to the all-β class of proteins. It has high thermodynamic stability and the unfolded subunits can fold and associate spontaneously to form native, biologically active TNF.
References
- 1 L.J. Old, Science, 230, (1985), 630– 632.
- 2 D. Pennica, G.E. Nedwin, J.S. Hayflick, P.H. Seeburg, R. Derynck, M.A. Palladino, W.J. Kohr, B.B. Aggarwal, D.V. Goeddel, Nature, 312, (1984), 724– 729.
- 3 A. Marnenout, L. Fransen, J. Tavernier, der Heyden J. Van, R. Tizard, E. Kawashima, A. Shaw, M.-J. Johnson, D. Seman, R. Mueller, M.-R. Ruysschaert, Vliet A. Van, W. Fiers, Eur. J. Biochem., 152, (1985), 515– 522.
- 4 N.C. Pace, CRC Crit. Rev. Biochem., 3, (1975), 1– 43.
- 5 P. Wingfield, M. Payton, J. Tavernier, M. Barnes, A. Shaw, K. Rose, M.G. Simona, S. Demczuk, K. Williamson, J.-M. Dayer, Eur. J. Biochem., (1986), in press.
- 6 D.P. Goldenberg, T.E. Creighton, Anal. Biochem., 138, (1984), 1– 18.
- 7 D.C. Teller, E. Swanson, Haen C. De, Methods Enzymol., 61, (1979), 103– 124.
- 8 S.W. Provencher, Comput. Phys. Commun., 27, (1982), 229– 242.
- 9 Craig, S., Schmeissner, U., Wingfield, P. and Pain, R.H., submitted.
- 10 M. Levitt, C. Chothia, Nature, 261, (1976), 552– 558.
- 11 T.W. Thannhauser, Y. Konishi, H.A. Scheraga, Anal. Biochem., 138, (1984), 181– 188.
- 12 M. Hollecker, T.E. Creighton, Biochim. Biophys. Acta, 701, (1982), 395– 404.
- 13 V. Prakash, S.N. Timasheff, Anal. Biochem., 117, (1981), 330– 335.
- 14 K. Haranaka, E.A. Carswell, B.D. Williamson, J.S. Prendergast, N. Satomi, L. Old, Proc. Natl. Acad. Sci USA, 83, (1986), 3949– 3953.
- 15 B.B. Aggarwal, W.J. Kohr, P.E. Hass, B. Moffat, S.A. Spencer, W.J. Henzel, T.S. Bringman, G.E. Nedwin, D.V. Goeddel, R.N. Harkins, J. Biol. Chem., 260, (1985), 2345– 2354.
- 16 P.C. Kull, P. Cuatrecasas, J. Immunol., 126, (1981), 1279– 1283.
- 17 K. Maeyama, R.J. Hohman, H. Metzger, M.A. Beaven, J. Biol. Chem., 261, (1986), 2583– 2592.
- 18 B. Vogelstein, R.Z. Dintzis, H.M. Dintzis, Proc. Natl. Acad. Sci USA, 79, (1982), 395– 399.
- 19 C.B. Anfinsen, Harvey Lect., 61, (1966), 95– 116.
- 20 F. Ahmad, P. McPhie, Int. J. Pept. Protein Res., 12, (1978), 155– 163.
- 21 Holde K.E. Van, 3rd Edn The Proteins 1, (1975), 226– 287.
- 22 I.D. Kuntz, J. Am. Chem. Soc., 93, (1971), 514– 516.